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Quantum-classical correspondence in energy space: Two interacting spin particles
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The Hamiltonian conservative system of two interacting particles has been considered both in classical and
quantum description. The quantum model has been realized using a symmetrized two-particle basis reordered
in the unperturbed energy. The main attention is paid to the structure of chaotic eigenfunctions~EF’s! and to
the local spectral density of states~LDOS!. A remarkable correspondence has been found for the shapes of
EF’s and the LDOS in the energy representation to their classical counterparts. Comparison with the band
random matrix theory predictions has revealed quite significant differences, which are due to the dynamical
nature of the model. On the other hand, a partial agreement is found by inserting randomnessad hoc in the
dynamical model for two-body matrix elements. This shows that, at least for small number of particles, care
must be taken when classical correlations are neglected. The question of quantum localization in the energy
space is discussed for both the dynamical and random models.@S1063-651X~98!05005-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Quantization of classically chaotic systems has been
dressed, from the very beginning, to both conservative
time-dependent systems. In the latter case the important
nomenon of dynamical localization was discovered, conn
ing a classical quantity, the diffusion rate, to the quant
localization length of the correspondent equilibrium distrib
tion @1#. Instead, in the case of conservative systems, imp
tant steps have been taken in establishing some distinc
features that mark a quantum chaotic system from an i
grable one: let us mention, for instance, the non-Wign
Dyson statistics of neighboring level spacings, or the sc
ring of eigenfunctions along some classical periodic orb
However, the possibility of quantum localization effects
such systems has been scarcely explored until recently, w
a clue in this direction was found@2# by investigating a par-
ticular class of random models: the Wigner banded rand
matrices~WBRM! ensemble.

For such an ensemble, whose introduction dates bac
Wigner himself@3#, it is possible to obtain a series of resu
that allow for a definition of quantum localization within th
classical energy surface. These results, when extende
Hamiltonian systems, would impose severe quantum lim
tions on the behavior of classical ergodic systems. The
portant result is that room is left for quantum localizati
and this can be obtained directly from the knowledge of
local spectral density of states~LDOS! and eigenfunctions
~EF’s!. Quite surprisingly, both quantities have well-defin
classical limits~see Ref.@2#! that, generally speaking, hav
received scarce attention before now.

On the other hand, in order to acquire physical relevan
it is clear that such results should be extended to real ph
cal systems, where the origin of randomness is purely
namical. This we do, in this paper, by considering a clas
571063-651X/98/57~5!/5291~12!/$15.00
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cally chaotic two-interacting spin system with a finite Hilbe
space. Our purpose is analyzing the structure of eigenst
and of the LDOS, and comparing it with expectations bas
on previous random matrix studies and with their classi
counterparts.

First of all we find that, when written in the eigenbasis
two noninteracting particles, reordered in the unperturb
energy, the Hamiltonian matrix has an overall banded str
ture. About the shape of eigenfunctions and the LDOS,
find that our quantum results, on the average, follow
behavior of similar quantities computed from WBRM on
approximately at best. Nevertheless, they follow remarka
well the behavior of their classical analogs that we actua
compute in the present paper.

On the other hand, the correspondence with random
trix theories~RMT’s! is restored on artificially randomizing
our Hamiltonian. The lesson we draw from this result is th
although RMT quite well reproduces fluctuation propert
of spectra of real chaotic Hamiltonians, some correlations
missing in their structure, which are essential in giving t
correct semiclassical behavior when detailed questions a
the structure of eigenfunctions are asked. It is of course p
sible that a better correspondence with RMT will be resto
with systems with a larger number of particles; for the tim
being, however, our results appear to indicate that cautio
needed in carrying over results from RMT to Hamiltonia
that have a smooth, well-defined classical limit.

II. MODEL

The model has been proposed and widely investigate
@4#. Here we review few fundamental facts about its classi
and quantum behavior. It describes two coupled rotat
with angular momentumLW andMW with the following Hamil-
tonian:
5291 © 1998 The American Physical Society
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5292 57F. BORGONOVI, I. GUARNERI, AND F. M. IZRAILEV
H5A~Lz1Mz!1BLxMx . ~1!

It may be used to describe the interaction of quasispin
nuclear physics or pseudospins in solid-state syste
ChoosingA21 as the unit of time andAB21 as the unit of
angular momentum, it can be written asH5H01V where
H05Lz1Mz and V5LxMx . The constants of motion ar
H5E, L2, andM2.

Fixing the values ofL2 andM2 it can also be shown@4#
that the total energy must be bounded:

E2<Emax
2 5~L211!~M211! ~2!

for LM.1.
It is worth mentioning that in this form the dynamic

variablesLW ,MW are not canonical. On the other hand, t
usual Hamiltonian form, with the canonical variablesqi ,pi ,
i 51,2 can be recovered by means of the following transf
mation:

Lx5AL22p1
2cosq1 , Ly5AL22p1

2sin q1 ,

Lz5p1 , Mx5AM22p2
2cosq2 ,

M y5AM22p2
2sin q2 , Mz5p2 , ~3!

keepingL2 and M2 as constants@5#. In these variables the
Hamiltonian reads
ia
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H5p11p21AL22p1
2AM22p2

2cosq1 cosq2 . ~4!

The analysis of the surfaces of section reveals a la
number of regular trajectories covering invariant tori wh
L2,M2 are both very small or very large@4#. To simplify the
problem we setL5M . In such a case the most interestin
situation occurs when 1,L,10 where, depending on th
energy valueE, regular and chaotic regions coexist. Typ
cally whenuEu is close toEmax5L211 trajectories are regu
lar while for E.0 islands of stability become very small an
chaotic motion dominates.

Quantization follows standard rules, and angular m
menta are quantized according to the relationsL25M2

5\2l ( l 11) where l is an integer number. Therefore, fo
given l the Hamiltonian is a finite matrix, and the semicla
sical limit is recovered in the limitl→` and\→0 keeping
L2 constant.

In our approach the Hamiltonian is represented in
two-particles basisu l z ,mz& where the matrix elements hav
the form

^ l z8 ,mz8uH0u l z ,mz&5dmz ,m
z8
d l z ,l

z8
\~ l z1mz! ~5!

and
^ l z8,mz8uVu l z ,mz&5
\2

4
dmz ,m

z861d l z ,l
z861A~ l 1 l z!~ l 2 l z11!~m1mz!~m2mz11! ~6!
rbed

hell

is

he

off-
the

he
l-
e
ne

ns
with l z ,mz integers,2 l< l z ,mz< l .
The z component of the total angular momentumJz5Lz

1Mz ~which is the same as the unperturbed Hamilton
H0) obeys the selection rulesDJz50,62\, so the subspace
spanned by the states with oddJz /\ can be separated from
that with Jz /\ even ~there are no matrix elements for th
transition between them!. In what follows, we fix Jz /\
5H0 /\ even. As a result, the matrix describing the Ham
tonian has a dimensionN52l 212l 11. We have also to
take into account the symmetry degeneracy with respec
the exchange of particles. Below, we consider only symm
ric states.

Let us now explain how the Hamiltonian matrix is co
structed. Oncel is fixed, there are 2l 11 single-particle lev-
els ^2 l u,^2 l 11u, . . . ,̂ 21u,^0u,^1u, . . . ,̂ l 21u,^ l u. The
ground state is represented by two particles in the low
single-particle level, which we label as^2 l ,2 l u; it has an
unperturbed energyE0522l\. The first excited state is
doubly degenerate and the two eigenstates having the s
energy E15(22l 12)\ are (̂ 2 l ,2 l 12u1^2 l 12,2 l u)/
A2 and^2 l 11,2 l 11u. The former state corresponds to o
particle in the single-particle level^2 l 12u and the other in
the single-particle ground state^2 l u. The latter state, to two
particles in the single-particle level^2 l 11u. We call theH0
n

to
t-

st

me

shell the set of states having the same value of unpertu
energy.

It is easy to prove that in the symmetrized basis each s
with H0 fixed and even has a degeneracyp5 l 11
2uH0u/2\, and the dimension of the Hamiltonian matrix
N5( l 11)2 due to the relation

(
H0/252\ l

\ l S l 112
uH0u
2\ D5~ l 11!2.

We then reorder the Hamiltonian matrix according to t
increasing unperturbed energies and we callun& the resulting
two-particles symmetrized ordered basis. As a result, the
diagonal matrix elements are symmetric with respect to
two main diagonalsHn,n5^nuHun& andHN2n,N2n .

Diagonal matrix elements are constructed from t
unperturbed HamiltonianH0; they are given by the eigenva
ues 22l\,~22l12!\, . . . ,2l\ and are disposed along th
principal diagonal starting from the lowest left corner. O
should note that diagonal elements of the perturbationV van-
ish due to Eq.~6!. The global structure of the matrixHm,n is
shown in Fig. 1. The next~to the principal one! diagonals
Hn,n61 correspond to transitions inside eachH0-shell while
the ‘‘arcs’’ connecting the two corners represent transitio
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57 5293QUANTUM-CLASSICAL CORRESPONDENCE IN ENERGY . . .
between neighboring shells havingDH0562\. Such a glo-
bal structure of the Hamiltonian matrix is not a peculiarity
this model but it corresponds to the so-called ‘‘shell mode
representation widely used in atomic and nuclear phy
@6,7#. It was shown in Refs.@8–10# that generic properties o
eigenfunctions in this basis can be directly related to sing
particle operators, in particular, with the distribution of o
cupation numbers for single-particle states.

The Hamiltonian matrix has a clear band structure, w
the bandwidthb ranging from 1 at the corners up tob52l
11 in the middle. However, this structure differs strong
from that of standard Wigner band random matrices~see, for
example,@2,11# and references therein!. Moreover, nonzero
off-diagonal matrix elements are positive and the mean
variance of the distribution of these matrix elements dep
on the classical parameterL25\2l ( l 11) only. To be more
precise, if one assumes a continuous distribution of the
trix elements, it can be shown~see Appendix A! that s2

5^v2&2^v&2.(L/4)4.
There are of course semiclassical corrections to this e

mate, but the variation of\ in one order of magnitude~avail-
able in our numerical study! changes the ratios2/(L/4)4 by
less than 1%. In the same way the mean value can be s
classically estimated aŝv&.(pL/8)2. The agreement be
tween these simple semiclassical formulas and our nume
data is shown in Appendix A.

The model is highly nonperturbative since the pertur
tion spreads the levels of the innerH0 shell all over the
allowed energy range; see Appendix B. As a result, the p
turbed spectrum is broader than the unperturbed one; th
an effect of the nonzero mean value of off-diagonal ma
elements. While the unperturbed spectrum has degene
energy levels with spacing\ ~therefore, with density of lev-
els r0;1/\ and spectral radiusRs

052\ l;2L), the per-

FIG. 1. Structure of the Hamiltonian matrixHn,m in the symme-
trized basis forl 511 ~N5144! and Jz even. Dots indicate off-
diagonal elements different from zero. The bandwidthb is maximal
at the center whereb52l 11. A few differentH0 shells are shown
by the horizontal lines.
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turbed one has (l 11)2 nondegenerate states within a spe
trum of radius Rs;L211, which gives the densityr
;1/\2;r0 /\.

Numerical data show that the density of states chan
from a triangular shape for the unperturbed Hamiltonian@one
more state is added~subtracted! at each neighbor level fo
H0 negative ~positive!# to the Gaussian form, which is
known to be generic for realistic finite systems like atom
and nuclei; see, for example, Refs.@6,7#. In Fig. 2 the per-
turbed and the unperturbed density are shown for a typ
case, together with the corresponding fitting curves.

III. QUANTUM-CLASSICAL CORRESPONDENCE
FOR EF AND LDOS

The subject of this section is the analysis of the LDO
~also known as ‘‘strength function’’ or ‘‘Green spectra’’! and
of the structure of eigenfunctions, together with their clas
cal analogs. In the quantum description, all information
contained in the matrix constructed from the eigenfunctio
cn(Em) of the total HamiltonianH represented in the or
dered unperturbed two-particle basisun&. Herecn(Em) is the
nth component of the eigenfunction havingEm as eigen-
value. This matrix is assumed to be reordered in eigene
giesEm .

In the classical limit the unperturbed energyE0 is not
constant when the~chaotic! trajectory of the total Hamil-
tonianH fills the H5E5const surface. Indeed it fills a rang
of values that are distributed according to the ergodic m
sure on the constant energy surface, yielding a distribu

FIG. 2. Density of states for the total HamiltonianH01V ~a!,
and for the unperturbed oneH0 ~b!, as a function of the rescale
energye5E/Emax for l 539 andL53.5. For comparison, the fitting
Gaussian~a! and the triangular curve~b! are given.
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5294 57F. BORGONOVI, I. GUARNERI, AND F. M. IZRAILEV
function W(E0uE) @2#. This distribution can be easily nu
merically calculated taking a sample of chaotic trajector
u(t)5„Lx(t),Ly(t),Lz(t),Mx(t),M y(t),Mz(t)… having the
same fixed values ofE andL25M2. Following these trajec-
tories, one can calculateH0„u(t)…5Lz(t)1Mz(t) taken at
equal instants of time and find the distribution ofH0 over the
energy band@12# defined by sojourn times.

The quantum analog of this distribution is provided by t
relation

Wn~E!5^ucn~Em!u2&m , ~7!

where the averagê•••& is taken over those eigenfunction
that have an eigenvalueEm in a fixed small energy interva
around a given energyE. Such an average has been done
order to smooth the fluctuations that affect individual eige
states; we would like to note that for our dynamical mod
unlike random matrix ensembles, there is no possibility
ensemble averaging. The distributionWn(E) gives the aver-
age shape of eigenstates represented in the unperturbed
particles basisun&.

In order to obtain the quantum distributionW(E0uE) one
needs to switch to the unperturbed energy representation
→En

0 . Technically this can be realized by introducing sm
energy binsDE and counting the correspondent probabil
within them,

W~E0uE!5(
n

Wn~E!d~E02En
0!. ~8!

Similarly, we can define the distributionw(EuE0). In the
quantum case this distribution is the LDOS defined by

w~EuE0!5(
m

^ucn~Em!u2&nd~E2Em!, ~9!

where the average is now taken over a number of value
n, such that the eigenvaluesEn

0 belong to a small interva
around the given unperturbed energyE0. The presence o
degeneracy in this case provides an obvious way of tak
the average. The corresponding classical function can
found by noticing that the trajectory does not fill the who
surfaceH05E0 but is restricted to an invariant manifol
specified by the value ofm. Giving equal weight to allm
values corresponding to a given value ofH0 exactly matches
the quantum averaging used in Eq.~9!. Then the classica
distribution can be evaluated analytically, since the class
unperturbed HamiltonianH0 is integrable. Indeed, the unpe
turbed solutionu0(t) for L25M2 andH050 is given explic-
itly by

Lx
0~ t !5AL22m2cos 2~ t2f!,

Ly
0~ t !5AL22m2sin 2~ t2f!, Lz

0~ t !5m,

Mx
0~ t !5AL22m2cos 2~ t2j!,

M y
0~ t !5AL22m2sin 2~ t2j!, Mz

0~ t !52m, ~10!

where 0,f,2p, 0,j,2p, and umu<L depend on the
initial conditions. Therefore,
s

n
-
l,
f

wo-

,
l

of

g
be

al

H„u0~ t !…5~L22m2!cos 2~ t2f!cos 2~ t2j!.

This means that the classical distribution ofH is given by
PL(y) wherey5L2(12x1

2)cospx2 cospx3 is a function of
the random variables21,xi,1, i 51,2,3.

IV. STRUCTURE OF EIGENFUNCTIONS

The quantum model has been already studied in Ref.@5#,
but previous studies have not addressed the structur
eigenfunctions in the two-body particle basis. This repres
tation is quite natural and corresponds to a well-known p
cedure in the physics of interacting particles.

In our dynamical model the structure of eigenfunctio
strongly depends on their energy because in the class
limit for low and high energies (ueu5uEu/Emax;1) the mo-
tion is regular while in the center of the energy ba
(ueu;0) is chaotic. One can, therefore, expect that in
classical limit (\;L/ l !1) the eigenstates corresponding
regular or chaotic regions are very different. This is, inde
clearly seen in Fig. 3 where two eigenstates are plotted in
unperturbed two-particle basis for the second~from the bot-
tom of the spectrum! eigenstate (e;21) and for the eigen-
state chosen in the center of the energy band (e;0). Com-
paring these two~typical! eigenstates, one can see that the
are strong correlations between components of the ‘‘regul
one@Fig. 3~a!# while the ‘‘chaotic’’ eigenstate can be treate
as random along the whole basisun&. We also would like to
note that the regular eigenstate has many ‘‘principal com
nents’’ and that it looks more or less extended. This ag
indicates that the perturbation is quite strong and effectiv
couples many unperturbed states.

A much more accurate analysis of eigenfunctions is
tained by studying their localization lengths. Since the ba
is finite and eigenstates can be extended along it, here we
different measures of localization lengths, based on their
tropyH and participation ratioP see, e.g., Refs.@13,14#,

l H~E!52.08exp$2H%, l ipr~E!53/P, ~11!

where

FIG. 3. Typical eigenfunctions for the caseL53.5, l 539. ~a!
The second excited statecn(E2) ~corresponding to a classicall
integrable region!. ~b! Eigenfunction for the energyEm close to
zero~middle of the spectrum, corresponding to the chaotic regio!.
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H5 (
n51

N

ucn~E!u2lnucn~E!u2

and

P5 (
n51

N

ucn~E!u4.

The normalizing coefficients 2.08 and 3 were chosen
order thatl H5 l ipr5N in the limit case when all componen
cn(Em) are independent Gaussian random variables. H
N5( l 11)2 is the size of the two-particle basis.

Further information can be extracted from the centro
nc of eigenstates and from their ‘‘widths’’:

nc~E!5(
n

nucn~E!u2,

l s~E!5H(
n

ucn~E!u2[n2nc~E!] 2J 1/2

. ~12!

In Fig. 4 we present numerical results for the above qua
ties as functions of the rescaled energye.

First, we note that the entropy and inverse participat
ratio localization lengths,l H and l ipr , are approximately
equal and show the same behavior, namely, the deloca
tion along the whole basis in the middle of the spectrum, a
the localization at the spectrum edges@see Figs. 4~a!–~b!#.

FIG. 4. Measures of localization lengths for eigenfunctions
the rescaled energy for the caseL53.5,l 539. ~a! Entropy localiza-
tion lengthl H ~b! localization lengthl ipr defined as the inverse pa
ticipation ratio,~c! square root of the variance,l s , ~d! centroidnc .
n

re

s

i-

n

a-
d

We also note that due to the underlying symmetry of
model the above quantitiesl ipr ,lH are symmetric arounde
50.

Even in the center of the spectrum, where eigenstates
on average maximally extended, there are large fluctuat
in the value of localization lengths. This indicates that in t
classically chaotic region there are some eigenstates that
not be treated as completely random and delocalized ove
energy shell. A careful study shows that such eigenstates
characterized by an extended background with some
nounced peaks~the so-called ‘‘sparse eigenstates’’!. Such
eigenstates may result in the absence of equilibrium an
the lack of standard statistical description, see details in R
@9#.

One can also see a clear regular structure in the de
dence ofl H and l ipr on the energy at the edges of the spe
trum, which reflects the regular character of eigenstates.

The other two quantities,nc ,l s , give information about
the ‘‘position’’ and ‘‘width’’ of eigenfunctions in the two-
particle basis, see Figs. 4~c! and~d!. In contrast tol H andl ipr
the ‘‘width’’ l s reveals a quite unexpected minimum at t
center of the spectrum. Additional numerical analysis sho
that this is a result of different ‘‘sparsity’’ of chaotic state
depending on the energy. Namely, chaotic eigenstates
more compact at the center of the energy band than far f
it. In fact, the ratiol s / l H, ipr can be used to extract any info
mation about the sparsity of eigenstates~see Ref.@15#!. In-
deed, two eigenstates with the same value ofl H, ipr can have
very different values ofl s depending on whether principa
components@those with relatively large values ofcn(Em)#
are clustering around some center~small l s) or randomly
scattered over the whole unperturbed basis~large l s).

Additional information can be obtained from the depe
dence of the centroids of eigenstates on the energy, see
4~d!. Apart from fluctuations and excluding the regular pa
this dependence is linear, which means that, on average,
ters of eigenstates are located at the center of the energy
covered by the classical distributionw(EuE0). This generic
feature of chaotic eigenstates has been studied in greate
tails in WBRM models@2#. In particular, it was shown tha
those eigenstates, which are completely extended in
whole energy shell, are characterized by maximal statist
properties of quantum chaos. For example, in that case
statistics of the energy spectrum follows the predictions
random matrix theory, such as the Wigner-Dyson form of
distribution of spacings between neighboring energy lev
On the other hand, localization of eigenstates within the
ergy shell leads to the so-called intermediate statistics@13#
~which is intermediate between the Wigner-Dyson and
Poisson statistics!.

Such a localization is reflected in the fluctuations ofnc
around the center of the shell~linear dependence one). In-
deed, if eigenstates are localized, their centersnc are typi-
cally scattered within the energy shell leading to strong fl
tuations ofnc ; instead, this cannot happen if they fill th
whole energy shell. It is important to stress that localizat
in the energy shell is different from that in the unperturb
basis, as found from Eqs.~11!.

The result presented in Fig. 4~d! shows that localization in
the energy shell, if any, is quite weak. A more direct analy
of the degree of localization in the energy shell is provid

s
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5296 57F. BORGONOVI, I. GUARNERI, AND F. M. IZRAILEV
by direct comparison of the average shape of eigenstate
energy representation to its classical analog. The results
presented in Fig. 5 where quantum and classicalW(E0uE)
@see Eq. ~8!# are plotted versus the rescaled energye
5E/Emax.

One can see that the only important difference is a sor
a weak quantum tunneling in the classically forbidden reg
~the tails of the classical distribution are sharper than
quantum ones!. Anyway, the good correspondence betwe
quantum and classical distributions shows that for the cho
parameters the model is in a deep semiclassical region
globally, the eigenstates should be treated as ergodic one~in
the energy shell, not in the whole unperturbed basis!!. This
means that the observed scattering of the centroids of ei
states@see Fig. 4~d!# is, in fact, quite weak and does not lea
to noticeable localization in the energy space.

Interestingly, the size of these ergodic eigenfunctions
smaller than the total-energy band. The distributionW0 is in
fact restricted between the minimum and the maximum v
ues that the functionH05Lz1Mz can assume under the co
straintsE5Lz1Mz1LxMx , Lx

21Ly
21Lz

25Mx
21M y

21Mz
2

5L2. It can be easily proved, using the Lagrange multipli
methods that forE50, uE0u,2(AL21121), which in Fig.
5 corresponds touSuppW(e0ue)u, ẽ .0.398.

V. LDOS STRUCTURE

Of special interest is the structure of LDOS, which
widely discussed in many applications in atomic, nucle
and solid-states physics. The importance of this quantity
lates to its physical meaning: it shows how an unpertur
state un& ‘‘decays’’ into other states due to interaction.
particular, the inverse width of the LDOS is associated w
the mean ‘‘lifetime’’ of a chosen basis state.

As was indicated above, the LDOS structure can be
tracted from the matrixcn(Em) by fixing an unperturbed
stateun& and searching the dependence onm. Therefore, we
can adopt the same procedure as we did above when an
ing the structure of eigenstates. In comparison with Fig. 3
show two such ‘‘matrix lines’’ corresponding to basis sta
~BS’s!, with closen values, taken from the center of matr
~see Fig. 6!. In fact, the BS lines in this matrix correspond

FIG. 5. ~a! Shape of eigenfunctions in the energy representa
~full line! and classical distributionW(e0ue) ~dashed! for the case
L53,5l 539, obtained by averaging over the centrall 11 eigen-
functions withe050; ~b! the same plot in semilog scale.
in
re

f
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the expansion of unperturbed~basis! states in the exac
eigenstates. While the structure represented in Fig. 6~b! is
typical, the form of the BS in Fig. 6~a! is only observed
around some specific value ofn.

To better understand the meaning of these peculiarn val-
ues we have computed the localization length@compare with
Eq. ~11!#

l ipr~n!53/(
m

ucn~Em!u4 ~13!

in some range ofn. The data presented in Fig. 7 reveal
global periodic structure of BS’s, from which one unde
stands that the peculiarity of BS’s reflected in Fig. 6 resu
from the degeneracy~inside each shell! of the unperturbed
spectrum. It is then convenient to consider in the followi
analysis, as a reference, the central shellH050 only ~set of
l 11 BS!.

Now we discuss the structure of the BS in energy sp
which is, in fact, the LDOS@Eq. ~9!#. According to results
@11# obtained for WBRM, the shape of the LDOS typical
changes from the Breit-Wigner~BW! law to the semicircle
when an effective perturbation is increased. In particular,
BW is expected when

1/A2p!r0V!Ab/2p, ~14!

wherer0 is the density of the unperturbed spectrum andb is
the effective bandwidth of the Hamiltonian matrix. The fir
inequality is related to the nonperturbative character of
coupling ~which is always verified in this model! while the
last, rewritten as

2pr0V25GF!b/r0 ,

simply means that the spreading widthGF of such distribu-
tion has to be much smaller than the energy bandwidthb/r0.
If we formally apply the above conditions to our case, we g
~in units of e5E/Emax) the following relations:b/r0.1/L
and 2pr0V2.(p/2)(L/4)3l . With our data the second con
dition in Eq. ~14! is strongly violated. In fact, the random
matrix argument leading to the above results rests on
assumption that the band in the Hamiltonian matrix

n
FIG. 6. ~a! The BS for ann value corresponding to a shell edg

indicated as a dashed line in Fig. 8.~b! The BS in the middle of
H050 shell.



S
,
d

co
w

r
te
e

h
M
e

tio
a

. I
ol
om

s
an
a

o
d

ch
o
a

th

s-
r-
the
the
le

al
the
en-

nal
es-
-

ell,

g
hat

-

57 5297QUANTUM-CLASSICAL CORRESPONDENCE IN ENERGY . . .
‘‘full’’; in our case, instead, we have a large sparsity~many
vanishing matrix elements inside the band!.

In Fig. 8 we show the structure of the LDOS for the B
corresponding to the center of the unperturbed spectrum
comparison with the Breit-Wigner fit which is performe
within the interval (2b/2r0 ,b/2r0).

One should stress that outside of the energy interval
responding to the band size, the tails of the LDOS are kno
to be highly nongeneric@6,11,16,7# depending on specific
properties of the model. As one can see, inside this ene
interval the shape of the LDOS can be roughly associa
with the BW form. On the other hand, outside, the tails d
cay very slowly compared to those given by the BW. Suc
form of the tails is also different from the case of the WBR
@6#, where outside the band energy range the tails decay
tremely fast~even faster than exponential!. In general, the
above results seem to indicate that the effective perturba
corresponds just to the condition when the BW approxim
tion starts to fail.

Let us now compare the quantum and classical LDOS
Fig. 8 we give an example of such distributions in the wh
energy shell. They coincide with a high accuracy, apart fr
the regions very close to the energy shell edges~where quan-
tum tunneling is significant!.

This again means that the system is in a deep semicla
cal regime. We remark that, in this model, going to the qu
tum regime in the chaotic energy region calls for very sm
matrices, for which fluctuations are extremely strong.

An important question is the relevance of the shape
eigenstates to that of the LDOS. As was shown in the mo
of WBRM @17# in some range of parameters~for not very
strong perturbation! the two shapes are very close to ea
other, which is a manifestation of the ergodic structure
eigenstates in the energy shell. On the other hand, with
increase of perturbation the LDOS was found to tend to

FIG. 7. Dependence of the inverse participation ratio of thenth
BS of theH matrix as a function ofn. Here isL53.5,l 539. The
H050 shell is inside the two vertical dashed lines.
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semicircle, for which strong localization turns out to be po
sible @2#. This localization manifests itself in different ave
age shapes of the EF and LDOS. Namely, the width of
EF in the energy representation is less than the width of
LDOS; the latter defines, in fact, the width of the who
energy shell.

Direct comparison of Fig. 5 and Fig. 9 in our dynamic
model shows a remarkable different energy range for
LDOS and EF distribution. As was discussed above, the
ergy width of eigenfunctions in the semiclassical region~in
the energy representation!, is much smaller than the width
of the spectrum because it is subject to an additio
constraint. We can take into account this restriction and r
cale the distributionW(e0ue) in order to have the same en
ergy range as forw(eue0):Wr(e0ue)5 ẽ W(e0 / ẽ ue/ ẽ ) where
ẽ 52(AL21121). The rescaled distributionWr is pre-
sented in Fig. 10 together with the distributionw(eue0). Af-
ter such a rescaling both distributions coincide quite w
which again indicates the absence of the localization.

VI. RANDOM TWO-BODY INTERACTION

In this section we modify our model of two interactin
particles by assuming a completely random interaction t

FIG. 8. ~a! Quantum LDOS distribution w(eue0)
5w(E/EmaxuE0 /Emax) ~full line! and best-fitted Breit-Wigner dis
tribution in the range specified above~dashed line! for the caseL
53.5,l 539, obtained averaging overl 11 values of BS for the
H050 shell; ~b! the same plot in semilog scale.

FIG. 9. ~a! The LDOS distributionw(eue0): quantum~full line!
and classical~dashed line! for the caseL53.5,l 539, obtained by
averaging overl 11 values of BS forH050 shell;~b! the same plot
in semilog scale.
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preserves some global properties of the original dynam
model ~1!. Namely, the unperturbed partH0 is taken to be
exactly the same as in the dynamical model. However,
replace nonzero matrix elements of the dynamical mo
with random and independent variables. Moreover,
choose a Gaussian distribution of these random matrix
ments with the same mean and variance as for the dynam
elements. In such a way we can reveal the influence of
namical correlations that are due to the specific form of
interaction V. Below we follow the same procedure d
scribed in previous sections when studying eigenstates
LDOS.

Numerical data for the ‘‘randomized’’ model show th
global spectral properties are the same as in the dynam
model. Namely, the perturbed spectrum is enlarged with
spect to the unperturbed one and the density of states k
the same Gaussian shape with the same mean and vari

On the other hand, the analysis of eigenfunctions reve
clear differences. Typical shapes of eigenstates and BS
shown in Fig. 11. In comparison with the corresponding F
3~b!, one notes that extended states look chaotic, simila
those found in the dynamical model. However, differen
from the dynamical model, a few strongly localized sta
now appear even in the center of the energy band. A typ
example of such an eigenstate is given in Fig. 11~a!.

To analyze the global characteristics of all eigenstates
have calculated different localization lengthsl H and l ipr as
well as the widthl s and the centroidsnc according to Eqs.
~11! and ~12!. The data reported in Fig. 12 should be co
pared with those in Fig. 4 for the dynamical model. As e
pected, for the random model there are no correlations in
energy dependence for large or small energy (ueu.1), com-
pared with Fig. 4. However, close to the edges of the ene
spectrum, the eigenstates cannot be treated as chaotic
the number of ‘‘principal components’’ in such eigenstates
quite small~this is revealed by small values of localizatio
lengthsl H ,l ipr ,l s). This is a result of the perturbative loca
ization that typically occurs for states close to the grou
state. In what follows, we exclude such states from our c
sideration.

For chaotic eigenstates, the various measures of loca
tion lengths give average values typically less than in
dynamical case. This holds especially in the middle of

FIG. 10. ~a! Classical LDOS distributionw(e,e0) ~full line! and
the rescaled classical distributionWr(e0ue) for the caseL53.5,l
539; ~b! the same plot in semilog scale.
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spectrumE.0 where we can now find a relatively larg
number of sharply localized eigenstates~with l ipr /N!0.1
whereN is the matrix size!, see Fig. 11~a!. In the same Fig.
12~d! one can also observe a much stronger scatter of
centroids of eigenstates transverse to the diagonal@compare
with Fig. 4~d! of the dynamical model#. The same features
have been found for basis states. These data indicate
fluctuations in the structure of eigenstates are much stron
than in the dynamical model.

Despite these fluctuations, the global structure of the
seems to remain the same. This is marked once more by
distribution of eigenfunctions in the energy space~the analog
of Fig. 5 is now shown in Fig. 13! which has the same shap
as in the dynamical model. However, the LDOS distributi
for the random model shows striking difference, see Fig.
Indeed, it can be described, apart from the central peak
the semicircle law@3,11,2#. Due to numerical problems, w
are not able to resolve the finite-size corrections close to
energy band, studied in Ref.@16#.

This surprising result is quite significant in the light o
application of random matrix models. Indeed, in Re
@18,19,2# it was found that localization in the energy shell f
the WBRM may occur only when the LDOS is characteriz
by the semicircle law. Therefore, the important question
whether the semicircle law is a quantum feature or it can a
occur in classical dynamical conservative systems. What
have found here is that the semicircle law has nothing to
with the semiclassical limit in our model. It seems to
dictated by quantum randomness rather than by the pse
randomness resulting from the classical chaos.

By comparing the shapes of the LDOS and EF for t
random model, one can see that they are clearly differen
contrast to the dynamical model. As mentioned above,
Ref. @2# such a difference was directly connected to the
calization of eigenstates in the energy space. As a resu
this localization, the spectrum statistics differs from that p
dicted by the RMT. In particular, for Wigner band rando
matrices, the level spacing distribution was found@2# to de-
viate from the Wigner-Dyson dependence.

To check these predictions, we have calculated the le
spacing distribution for both dynamical and random mod

FIG. 11. Typical eigenstates for the caseL53.5 andl 539 and
Gaussian random nonzero off-diagonal elements.~a! and ~b! have
close eigenvalues in the middle of the spectrum, respectivelye
5E/Emax51.4831023 ande5E/Emax52.29531022 but very dif-
ferent inverse participation ratios (l ipr /N50.0027 for the first and
l ipr /N50.87 for the last, whereN is the matrix size!.
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for the part of the spectrum corresponding to chaotic eig
states. As we expected, for the dynamical model we h
observed a very good correspondence to the Wigner-Dy
dependence. Surprisingly, we have found that the rand
model gives the same result. This means that the level s
ing distribution is quite insensitive to the small number
localized eigenstates. On the other hand, this result indic
that, in the case of realistic matrices, the degree of le
repulsion is not so clearly affected by the difference in
shapes of the LDOS and EF, as it was in the case of WBR

VII. SUMMARY

In this paper we have studied a dynamical model with t
interacting particles~rotators!. The classical version of this

FIG. 12. Measures of localization lengths for eigenfunctions
the Gaussian random caseL53.5,l 539; compare with Fig. 5.

FIG. 13. ~a! The EF distribution for the Gaussian random ca
with L53.5,l 539, obtained by averaging overl 11 central eigen-
functions;~b! the same as~a! in semilog scale.
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model manifests both regular and chaotic motion, depend
on the total energy: both at small and at large energies
motion is regular, while, at intermediate energies, chao
properties are very strong. The quantum analog of this mo
can be assumed to describe two interacting spins. Our ch
was restricted to the subset of symmetric states, which
responds to particles with integer spins.

This model has already been under investigation, both
the classical and in the quantum description~see, for ex-
ample, Ref.@4#!. However, here we have used an approa
that seems much more instructive: in the quantum case
have represented the Hamiltonian matrix in the basis defi
by the two-body eigenstates of the noninteracting syst
reordered according to increasing total energy. Such a re
sentation corresponds to a well-known procedure in ato
and nuclear physics~‘‘shell-basis representation’’!, and
seems to be very useful in view of recent developme
@8,9#.

In this representation the Hamiltonian matrix turns out
be banded, with many zero elements inside the band. If p
dorandomness of nonzero off-diagonal elements is assu
~in the region of classical chaos!, then one can refer to som
modern developments of random matrix theory: in particu
to the so-called Wigner band random matrix ensemb
which is conjectured to be well suited to the description
conservative systems with complex behavior~see Ref.@2#
and references therein!. However, the assumption of pseud
randomness of matrix elements is far from obvious: check
it was in fact one of the major motivations of our work.

Random matrices in the WBRM ensemble are charac
ized by a sharp band inside which matrix elements are r
dom, independent, and identically distributed, plus an ad
tional principal diagonal with increasing entrie
corresponding to the unperturbed spectrum of the two-b
Hamiltonian.

Compared to WBRM, our model has two peculiarities.
the first place there is no free parameter of interaction
tween the particles, the only parameter that determines
relative strength of the interaction being the total energy
the system. Second, our model has an highly degenerate
perturbed spectrum. Still, the main features of the model
expected to be quite generic, because these peculiaritie
quite typical in such physical applications as complex ato
and nuclei.

In this paper we have analyzed two main issues, m
vated by recent results@2,8,9#. First, we have studied the
structure of the eigenfunctions and of the LDOS and ha
compared them to what is known for completely rando
models, and for WBRM in particular. Second, we ha
looked for effects of dynamical localization; though we ha
found no significant evidence for such effects, our analy
has brought into light a close connection~surmised in Ref.
@2#! between the LDOS, eigenfunctions, and certain class
distributions, which can be easily found by solving the cla
sical equations of motion.

As expected, in the region of classical regular motio
eigenstates have a regular structure themselves; still, cla
cal integrability does not result in strong localization, b
cause these eigenstates are typically quite extended ove
basis of two-particle unperturbed states. In contrast, in
region of classical chaos, the structure of eigenstates lo

r
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very chaotic itself. Nevertheless, the size of such cha
eigenstates can be smaller than the size of the basis, th
the eigenstates may be treated as random~ergodic! ones on
the scale of their localization.

The dependence of the structure of eigenstates on en
reflects their regular or chaotic nature, as it is chaotic itsel
the latter case; e.g., fluctuations of the number of princi
components are stronger where classical chaos is stron
which is the reason why a non-negligible fraction of eige
states have a size significantly smaller than the basis siz

Generally speaking, the global properties of chao
eigenstates are quite similar to those found for WBRM, w
one remarkable exception. In fact, for the WBRM ensemb
the expansion of exact eigenstates over the unpertubed
has a structure quite similar to the one observed on exp
ing unperturbed eigenstates on the basis of exact eigens
Instead, this symmetry is broken in our model, apparen
due to the degeneracy of the unperturbed spectrum: a fea
that is missing in WBRM.

Expansion of unperturbed eigenstates on exact ones
rectly leads to the LDOS. In standard random matrix mod
the latter is known to be of the BW type, with the half-wid
given by the Fermi golden rule. Instead, in our dynami
model the LDOS is BW like only around the central peak;
tails have a much slower decay than predicted by the
law.

Dynamical localization effects are an extremely importa
issue when investigating the quantum mechanics of cha
systems. Our approach to this problem was based on
@2#, where it was argued that, for the case of conserva
systems, such effects are manifested by localization of eig
states within the so-called energy shell, which is the rang
energies ergodically explored by classical motion. From t
viewpoint, in order to detect localization~if any!, one has to
find the form of the classical energy shell, and then to co
pare it with the form of chaotic quantum eigenstates.

Following this approach, we have defined and nume
cally computed classical distributions that strikingly corr
spond to the LDOS and to the average shape of eigenf
tions. Besides opening a new direction in the study of
global properties of the quantum LDOS and EF’s, this f
may be important for the quantum statistical mechanics
isolated, chaotic systems of interacting particles, because
knowledge of the average shape of eigenstates gives an
cal access to the distribution of occupation numbers
single-particle states@8,9#. However, insofar as localizatio
effects are concerned, the close agreement we have obs
between quantum and classical distributions indicates tha
such effect is present in our model, which is, in fact, in
deep quasiclassical region. Additional indications of abse
of significant localization effects is provided by the analy
of the level-spacing distribution, which closely follows,
the strongly chaotic case, the predictions of random ma
theory.

Finally, we have studied a random matrix analog of o
dynamical model, which was constructed by leaving the
perturbed part of the Hamiltonian matrix unaltered and
replacing all nonzero off-diagonal elements by Gaussian
dom variables with the same mean and variance as in
dynamical model. In this way we were able to check to w
extent quantum chaotic dynamics can be simulated by
ic
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dom interactions; in other words, we have checked the ps
dorandomness assumption. We have found that the ran
matrix model and the dynamical one are very similar in wh
concerns the global average properties of eigenstates. Ne
theless we have found that fluctuations of individual eige
states are significantly stronger in the random model: in p
ticular, there are many more eigenstates that are significa
more localized in comparison to the average size of cha
eigenstates. In spite of this enhancement of the numbe
localized states, the level spacing distribution of the rand
model is still short of showing significant deviations fro
random matrix theory.

The most striking difference between the dynamical a
the random model has been detected in the form of
LDOS. The LDOS of the random model drastically diffe
from that of the dynamical model, as it is quite close to t
semicircle law, with an additional peak at the center. Wh
the origin of this peak is related to a specific feature of o
model, the occurrence of the semicircle is somewhat surp
ing, because the general statistical properties of the ran
model are similar to those of the dynamical one. F
WBRM, the semicircle law appears when the perturbat
~that is, the variance of the off-diagonal elements! is strong;
moreover, localization in the energy shell was found to a
pear only in the presence of the semicircle law. In contras
the dynamical model, neither WBRM nor the random mod
have a classical analog~although the latter is much closer t
a realistic systems than WBRM!; therefore one can ask th
question of whether the semicircle law for the LDOS c
appear at all in quantum systems with a chaotic class
limit. Our analysis shows that great care has to be take
extending predictions of random matrix theory to systems
the latter class, at least if the systems themselves are
quasiclassical regime. In that case the pseudorandomnes
sumption obliterates dynamical correlations to which t
LDOS, and similar quantities, are quite sensitive.
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APPENDIX A

In this appendix we show that assuming a continuous
tribution of off-diagonal nonzero elements, the average a
variance can be estimated semiclassically and good ag
ment with numerical data is found. Let us start with Eq.~6!,
from which we have

^v&5
\2

M2 (
i 51

M

(
j 51

M

@~ i 1 l !~ i 2 l 11!~ j 1 l !~ j 2 l 11!#1/2

.
\2

16l 2E
2 l

l

dxA~x22 l 2!E
2 l

l

dyA~y22 l 2!, ~A1!

where, as usualL25\2l ( l 11). Integrals can be easily evalu
ated and one has
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^v&.S \ lp

8 D 2

.S pL

8 D 2

. ~A2!

In the same way,

^v2&5S \2

4M D 2

(
i 51

M

~ i 22 l 2!(
j 51

M

~ j 22 l 2!

.S \

2D 4F 1

2l E2 l

l

dx~ l 22x2!G2

5S \2l 2

6 D 2

.S L2

6 D 2

, ~A3!

in such a way that

s25^v2&2^v&2.S L

4D 4

. ~A4!

The agreement between Eqs.~A2! and ~A4! and numeri-
cal data is shown in Fig. 15.

APPENDIX B

It is instructive to estimate the splitting of the energy le
els within oneH0 shell due to the perturbation, using dege
erate perturbation theory. Let us consider, for instance
shell with H052\ j .0 that has degeneracyp5 l 112 j .
Perturbed energy levels can be calculated by diagonali
the matrix:

hs,s85^s,2j 2suVus8,2j 2s8&. ~B1!

This is a symmetric tridiagonal matrix with zero elemen
along the principal diagonal, whose elements for anys>2
are given by

FIG. 14. ~a! The LDOS distribution for the Gaussian rando
case withL53.5,l 539, obtained by averaging overl 11 central
lines; ~b! the same as~a! in semilog scale.
-
a

g

hs,s115
\2

4
A@~ l 2s11!22 j 2#@~ l 1s!22 j 2#. ~B2!

The distance between two neighboring perturbed lev
can be estimated as the difference between two neighbo
matrix elements~due to the symmetry of the matrix!,

hs11,s122hs,s11;
\2

2
l , ~B3!

where the approximation is taken forj 5s50. This means
that the total splitting is of the order

DE;2pl\2/2;\2l 2;L2. ~B4!

FIG. 15. ~a! Off diagonal nonzero matrix elements average a
function of classicalL and l 59 ~circles!, l 519 ~squares!, l 539
~crosses!; the line is the semiclassical expression (pL/8)2. ~b! Off-
diagonal nonzero matrix elements variance as a function of clas
L andl 59 ~circles!, l 519 ~squares!, l 539 ~crosses!; the line is the
semiclassical expression (L/4)2.

FIG. 16. Energy spectrum splittingDE due to the perturbation
V, as a function of\2l 2 for 0.01,\,2, l ,40, andL.1 ~points!.
Full line is the classical energy shellDE52(L211).
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Though this approximation is obtained forj 50, corre-
sponding to the biggestH0 shell, similar behavior is ex-
pected for other shells. The expression~B4! has been
checked numerically; see Fig. 16, where we plotDE5Eu
2El as a function of\2l 2 for different l and\ ~hereEu and
v.

,

.

El are the energy of the upper and lower split level with
one H0 shell! For comparison, in Fig. 16, the relationDE
52(11\2l 2) is also shown, which, in the classical limit\
→0, l→`, and forL.1 yields the expression for the clas
sical energy shell,DE52Emax52(11L2).
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